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Introduction

» What is Federated Graph Learning?
O Traditional Graph Learning

« Train graph learning models on graph data collected in a single machine

« Inapplicable in practice due to privacy concerns and regulations®

i
. a
1. Sample 2. Aggregate feature 3. Predict labels using
neighborhood information from aggregated information

neighbors

Graph neural networks (GNNs) aggregate information from neighbors to learn node embeddings
[1] Voigt, Paul, and Axel von dem Bussche. "The EU General Data Protection Regulation (GDPR) A Practical Guide." (2017).



Introduction

» What is Federated Graph Learning?
O Federated Graph Learning (FGL)

» Collaborative learning on graph data distributed in multiple clients

« Applications: financial systems, healthcare systems, medical institutes, E-commerce companies......

An example of a financial system including four banks



Introduction

» What is Federated Graph Learning?
O Federated Graph Learning (FGL)

» Collaborative learning on graph data distributed in multiple clients

« Applications: financial systems, healthcare systems, medical institutes, E-commerce companies

* Framework: FedAvg!, FedProx?, ......

Central server

2
©

@ The server sends current model parameters to clients

—> 0000 >

Local model
@ Each client performs local updates on its local graph data

©"®

@ The server takes a weighted average of local model parameters Clients %ﬁ 3}{
t t

A

[1] McMahan, Brendan, et al. "Communication-Efficient Learning of Deep Networks from Decentralized Data." AISTATS 2017.
[2] Li, Tian, et al. "Federated Optimization in Heterogeneous Networks." MLSys 2020.




Introduction

» Research Topics in FGL
O Subgraph Federated Learning

» Missing cross-client links

« Community heterogeneity

O Federated Graph Learning with Non-IID Graphs
» Cross-dataset structural knowledge sharing

e Distribution shifts

O Privacy-Preserving Federated Graph Learning
« Entity-level privacy protection

» Structure-level privacy protection



Introduction

» Research Topics in FGL

O Subgraph Federated Learning
» Each client only holds a subgraph (a local view) of the global graph and cannot share
raw data due to privacy or communication constraints

» Challenges: missing cross-client links & community heterogeneity

v A e .‘ Community B

Community A
User2 User 1
ﬁph Subgraph

User 3
Subgraph

Missing cross-client links Community heterogeneity



Introduction

» Research Topics in FGL
O Federated Graph Learning with Non-IID Graphs

« Each client has multiple graphs and focuses on graph-level tasks (e.g., graph classification/regression)
» Graphs across clients are usually non-IID

* Challenges: cross-dataset structural knowledge sharing & distribution shifts

MUTAG (CHEM)

0 10.17
BZR (CHEM) Jultiv Be]

ENZYMES (BIO)

1.4 .
ME Environment: Scaffold
1.2 Scaffold 1 Scaffold 2

1.2 3C-Ring 6C-Ring
-1.0 [ ] Py
L ] | ]

-0.8 @ 'Y e e
PROTEINS (BIO)
] ]
Letter-low (CV) . %
- 0.4 Y A
Letter-med (CV) / . [
0.2 O - \
Random [l 7 o /9
Bm I,
M B E P LI Lm R Cyclopropanol 1,4-Cyclohexanediol
Cross-dataset structural knowledge sharing Distribution shifts



Introduction

» Research Topics in FGL

O Privacy-Preserving Federated Graph Learning
» Graph data may be leaked/inferred in the central server
« Challenges: entity-level privacy protection & structure-level privacy protection

Client 1

___________________________

Central Server

[ i

1 1

i i

! Local GNN |

Entity privacy leakage ! R -

1 I

B &

1 1

% & a j

(= e m \"""""".'.f """""" Global
S Client1 S Client2 { Tocal Useriem Graph ,‘%GNN
o ° | "‘ Local GNN :
P9 /g___- E oca E
ad | — | o8 et
&/ Structure 2 i i
privacy N |
leakage Client N
Entity-level privacy protection Structure-level privacy protection



Introduction

» Tutorial Outline

Research Topics Challenges Techniques Representative Works
Missing cross-client links Missing neighbor generator FedSage+
Subgraph Federated . o .
Learning (25 mins)  community heterogeneity nerEs el sy et < Fed-PUB
personalized parameter masking
Cross-dataset structural :
FGL with Non.—IID TR T S TN Structure knowledge sharing FedStar
Splus (25 i) Distribution shifts Virtual node optimization FedVN
Privacy-Preserving Entity-level privacy protection (Local) differential privacy FedSoG
FGL (25 mins)  grycture-level privacy protection  Local information mixup FedGNN, FedEgo
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Subgraph Federated Learning

» Background

O Problem Setting
» Setting: Each client only holds a subgraph (a local view) of the global graph and cannot
share raw data due to privacy or communication constraints
« Example: Each hospital holds a patient interaction subgraph, where nodes represent
patients and edges reflect contact or shared treatment. Using subgraph FL, hospitals can

collaboratively train a disease prediction model without sharing sensitive patient data

Hospital A
+
5 Jointly training
without sharing +
graph data
el
i = Medical City-level disease
= Hospital C Administration diagnose model

Center

-+

 §
Hospital D



Subgraph Federated Learning

» Background

O Problem Formulation
* Consider M clients. Each client i € [M] holds a local subgraph
Gi = {VirEirXi} cG ’ S [M]

* Collaboratively learn models {f(-; ¢;)};m; (GNNs) that minimizes the loss

{gin[ll?/l] Zl |V| L (Gl' ¢l)

where £; and ¢; denote the local objective function and model parameters




Subgraph Federated Learning

» Challenges in Subgraph Federated Learning
O Missing Cross-Client Links

» Training a separate graph mining model on each subgraph may not capture the global
data distribution and is also prone to overfitting

* Due to privacy or siloed storage, the
leading to incomplete neighborhoods and degraded GNN performance

0 Community Heterogeneity

« Subgraphs originate from different communities in the global graph, which can have
incompatible properties

» Naively aggregating all local models leads to — degradation due to

incompatible updates



Subgraph Federated Learning

» Missing Cross-Client Links

O Joint Learning from Heterogeneous Subgraphs
» The global graph is distributed into a set of small subgraphs with heterogeneous feature
and structure distributions

« Training locally may lead to overfitting and poor generalization

O Solution

« GraphSage: For a node v € V; with features as h) = x,,, at each layer k,

RS = o (¢* - (b~ 1 AGG({RE™?, vu € N, (1)}) ))



Subgraph Federated Learning

» Missing Cross-Client Links
O Cross-subgraph Connections are Unavailable during Deploying FedSage

» The inability to access the full ego-networks causes the neighborhood aggregation to be biased,
violating GNN assumptions

» This results in limited expressive power and suboptimal predictions

L Solution

. : generating missing neighbors along FedSage




Subgraph Federated Learning

» Missing Cross-Client Links
O FedSage+

» Each client first mends its subgraph by generating missing neighbors, then applies FedSage

on the augmented subgraph

NeighGen l _
Graph mending F

He ! HI ——

. dG _ .
.5 - § = R ,$ ~ i
en (L (L

Gi, X; Gi, X;

ra rf Gi, X L




Subgraph Federated Learning

» Missing Cross-Client Links

O FedSage+
» Missing Neighbor Generator (NeighGen)

H¢: a K-layer GraphSage encoder HY: a generative model (FNN)
Z; = {zy|2zo = hE, 2, € R%, v € V;} recovering missing neighbors

: NeighGen Sl

ﬁ . _Hﬁlé
hide dGen L
- /} N i X [

fGQl
‘ N\

dGen: a linear regression model which fGen: a feature generator which generates a set

predicts the numbers of missing neighbors of N; feature vectors

N; = {#i, |7, € N,v € V;} X; = {%,|%, e R 7, € N, v € V;}




Subgraph Federated Learning

» Missing Cross-Client Links
O FedSage+ ‘

l

NeighGen

e | o Graph mending F
» Missing Neighbor Generator (NeighGen) |
hide - ., paten N, B —~ GNN FNN — 7
-._| fGen (L [L
Gy, X; Gi, X; Ld,[:f G{, X{ L
Loss for dGen Loss for f{Gen
t t

L£r =\t N of =\

> LE G )t M 30 D0 min ([~ al )

“Zr,| ueENgG, ('U)ﬁV%.h

.
Vil

veV; veEV; pE[Ny]
V;: the remaining node set in G;
fl,: the predicted number of v’s missing neighbors %P the p-th predicted feature

n,: the ground-truth number of v’s missing neighbors  x,,: the feature of a v’s missing neighbor

L3 : smooth L1 distance



Subgraph Federated Learning

» Missing Cross-Client Links
O FedSage+

» Directly averaging NeighGen weights across clients hurts personality

« Solution: Local NeighGen + Cross-Subgraph Feature Matching

1 : :
Loss for fGen: Ty 2. 2 ( min (7 - zald) +a Y |min([H (20)" - wull3)

h
U eV, pelng] ueNGi(v)mv’? jEIM]/ J

» Find the closest node in client j , to allow each NeighGen i to generate diverse
neighbors
» Client j computes gradients and share with client i to update H9

« Ensures privacy + enables federated learning of diverse NeighGens



Subgraph Federated Learning

» Experiments
O Datasets

* Four real-world datasets: Cora, Citeseer, PubMed and MSAcademic

« Synthesize the distributed subgraph system with the Louvain algorithm
O Baselines

» GlobSage (upper bound): the GraphSage model trained on the original global graph

» LocSage: one GraphSage model trained solely on each subgraph

» LocSage+: the GraphSage model + NeighGen model jointly trained solely on each subgraph
O Metric

* Node classification accuracy



Subgraph Federated Learning

» Experiments

O Main Results
» FedSage and FedSage+
have the relatively similar
accuracy as GlobSage
» FedSage and FedSage+

have stable performance

Cora Citesser

Model M=3 M=5 M=10 M=3 M=5 M=10

LocSage 0.5762 0.4431 0.2798 0.6789 0.5612 0.4240
(£0.0302)  (£0.0847) | (£0.0080) (+0.054) (£0.086) (£0.0859)

LocSage+ 0.5644 0.4533 0.2851 0.6848 0.5676 0.4323
(£0.0219) (£0.047) (£0.0080)] (£0.0517) (£0.0714) (£0.0715)

FedSage 0.8656 0.8645 0.8626 0.7241 0.7226 0.7158
(£0.0043) (£0.0050) | (£0.0103)] (40.0022) +0.0066) (£0.0053)

FedSage+ 0.8686 0.8648 0.8632 0.7454 0.7440 0.7392
(£0.0054) (£0.0051) | (£0.0034)] (£0.0038) (£0.0025) (£0.0041)

GlobSage 0.8701 (£0.0042) 0.7561 (+0.0031)
PubMed MSAcademic

Model M=3 M=5 M=10 M=3 M=5 M=10

LocSage 0.8447 0.8039 0.7148 0.8188 0.7426 0.5918
(+£0.0047) (£0.0337) (£0.0951) (£0.0331) (£0.0790) (£0.1005)

LocSage+ 0.8481 0.8046 0.7039 0.8393 0.7480 0.5927
(£0.0041) (£0.0318) (£0.0925) (£0.0330) (£0.0810) (=£0.1094)

FedSage 0.8708 0.8696 0.8692 0.9327 0.9391 0.9262
(£0.0014) (40.0035) (40.0010) (£0.0005) (£0.0007) (£0.0009)

FedSage+ 0.8775 0.8755 0.8749 0.9359 0.9414 0.9314
(£0.0012) (£0.0047) (£0.0013) (£0.0005) (£0.0006) (£0.0009)

GlobSage 0.8776(£0.0011) 0.9681(40.0006)




Subgraph Federated Learning

» Community Heterogeneity

O Heterogeneity of Subgraphs

» Subgraphs in different community can have opposite properties Community B

Community A

» Naively aggregating all local models leads to knowledge collapse

o . User 2 User1
O No Access to Subgraph Identities Subgraph Subgraph
« The server has no visibility into which client belongs to which b
community - User 3

O subgraph @
« It’s challenging to determine which clients should share model b

parameters or collaborate more closely

O Solution

. Functional Similarity Matching + Personalized Parameter Masking




Subgraph Federated Learning

. . Parameter Gradient
» Community Heterogeneity: FED-PUB :
0 Functional Embeddings for Subgraph Similarities 5! -y
»  Group clients with similar subgraphs (e.g., within the same community) #.___ | & &
Clients Clients

Avoids curse of dimensionality + More computationally efficient + Maintains privacy

O Solution
* Measure functional similarity based on model outputs

Use random graphs as shared GNN input and compare average embedding similarity

~ ~

. hi - h; Function ‘ »
S(l,]) = —= = S 31 —®— Paramter (Gradient)
| |h | | . | |h . | | O —— Functional Embedding
' J %) @ 2
g . ~ E Q.)
h; : averaged output of all node embeddings for random graph ¢ £ £ 11
' T olet=3 .
32256512 1024 2048

12345678 9101112131415

Clients # of Hidden Dimensions




Subgraph Federated Learning

» Community Heterogeneity: FED-PUB
O Personalized Weight Aggregation

» Global model averaging can collapse conflicting updates from heterogeneous subgraphs

« Use functional similarity (via outputs on random graphs) to guide personalized aggregation

M ..
- z exp(7 - S(i,)))
9i<— al-j~9j, a;; =

Yoo yexp(t - S, k)

Community B \Iodel 1 El 0,
_ Community A Random = f(E:0y) == : —...Er-,.-
0;: aggregated personalized model weights — ) Graphs, G ’.-’ -
Suhgraph nhg;raph R o,
. " Mode 12 2 2
7: hyperparameter for scaling ' @ p r@on -5 y iE-
o . o o o o . 1 ,' Lser.‘!- —
a;;: normalized similarity between clients i and j | Subgra o Simitarity T, -
- f{E; a3) S» I-#I -

(A) Community Structure (B) SuhgrapISimilarit}' Matching in Server




Subgraph Federated Learning

» Community Heterogeneity: FED-PUB
O Adaptive Weight Masking

 Even with functional similarity, scalar aggregation (a;;) can’t tell which parameters are
useful
« Each client learns a sparse mask u; for fine-grained control
6; = u; ° 0;

» Final objective

min L(G;; 0, 1) + A |1l l1) +22110; — 8;113

Encourages sparsity Prevent local overfitting




Subgraph Federated Learning

» Experiments
O Datasets

« Citation graphs: Cora, CiteSeer, Pubmed, ogbn-arxiv
* Product graphs: Amazon-Computer, Amazon-Photo
« Synthesize the distributed subgraph system with the METIS algorithm
O Baselines
« Standard FL: FedAvg, FedProx; Personalized FL: FedPer; Subgraph FL: FedGNN, FedSage+
Graph-level FL: GCFL; Local
O Metric

* Node classification accuracy



Subgraph Federated Learning

» Experiments
O Main Results

» FedSage+ fails due to naive weight averaging and ignoring community structure

» FedPer and GCFL alleviate knowledge collapse, but lack community-aware aggregation

Cora CiteSeer Pubmed -
Methods 5 Clients 10 Clients 20 Clients 5 Clients 10 Clients 20 Clients 5 Clients 10 Clients 20 Clients -
Local 8130 £ 0.21 79944024 8030+025 69.024+0.05 6782+0.13 6598+0.17 84.04+0.18 82.81+0.39 82.65+0.03 -
FedAvg 7445+ 564 69.19+067 6950+358 T1.06+0.60 6361359 6468+1.83 7940+0.11 82.71+029 80.97+0.26 -
FedProx 7203 + 456 60.18+7.04 48224+6.81 TI73+1.11 6333+£325 6485+135 79454025 8255+024 80.50+0.25 -
FedPer 81.68 +040 79354+0.04 78.014+032 70414+032 7053+028 66.64+0.27 8580+0.21 8420+028 84.7240.31 -
GCFL 8147+ 0.65 78661027 79214+0.70 70344057 69.01+£0.12 6633+£0.05 8514+033 84.18+0.19 83.94+0.36 -
FedGNN 8151 £0.68 70.124+099 70.10+3.52 69.06+092 5552317 5223+£6.00 7952+023 83.25+045 81.61+0.59 -
FedSage+ 7297 +594 69.05+159 5797+ 126 7T074+0.69 6563310 6546+£0.74 7957+0.24 82.62+0.31 80.82+0.25 -
FED-PUB (Ours) 8370 +0.19 81.54+0.12 81.754+056 72.68+044 72354053 67.62+0.12 86.79+0.09 86.28+0.18 85.53+0.30 -

Amazon-Computer Amazon-Photo ogbn-arxiv All

Methods 5 Clients 10 Clients 20 Clients 5 Clients 10 Clients 20 Clients 5 Clients 10 Clients 20 Clients Avg.
Local 8022 4+0.13 8891+0.17 89524020 91.674+0.09 91.80+0.02 9047+£0.15 6676 £0.07 64.92+0.09 6506+0.05 79.57
FedAvg 8488+ 196 7954+4+023 7479+024 89894083 83.15+371 8l135+£1.04 6554+007 6444+0.10 63.24+0.13 7458
FedProx 8525+ 127 8381+1.09 73.05+130 9038+048 8092+464 8232+0.29 6521+020 643741018 63.031+0.04 7284
FedPer 89.67 £ 034 89.73+0.04 87864043 91444037 9176023 9059+£0.06 6687005 64.99+0.18 64060+ 0.11 7994
GCFL 80.07+091 90.03+0.16 89.08+0.25 91994029 92061025 90.79+0.17 6680+0.12 6509+0.08 6508+0.04 7990
FedGNN 88.08 +0.15 88.18+041 B83.16+0.13 90254+0.70 87.12+£201 81.00+448 06547+022 6421+032 63.80+£0.05 7523
FedSage+ 85.04 £ 061 80504130 70424085 9077+044 7681824 8058+ 1.15 65069+0.09 6452+0.14 63.31+0.20 7347
FED-PUB (Ours) 90.74 £0.05 90.55+0.13 90.124+0.09 9329+0.19 92734+0.18 9192+0.12 67.77+0.09 6658 +0.08 66.64+0.12 8159




Subgraph Federated Learning

» Experiments
O Ablation Study

« Functional embeddings are both effective and privacy-preserving for estimating

subgraph similarity, outperforming parameter/gradient-based methods and matching the

performance of privacy-sensitive label-based similarity

Table 10: Results on varying the similarity calcu-

i 1 L 1
2 2 i z
3 3 3 3
$ : E : lation schemes: parameter, gradient, label, and
£ 8¢ 2 £ 2 our functional embedding, on the overlapping
pai 11 1n 1n - - .
Zu L S =g node scenario with 30 clients of the Cora dataset.
O i Ol O O
it 18 18 18 Rounds
is s 1a ia
i 3 ] b Model 20 40 60 80
12345467 891I01103UBETI8HR0 123454678 9101IA3AUEGTIEED 122456789101 MNEETIEIERD 1234668788910 UANMNGETIBIED
Clients Clients Clients Clients FedAvg 2994 32.69 47.84 5242
(a) Missing edges (b) Label similarity (c) Round at 5 (d) Round at 30 Parameter 2004 3589 4703 5278
Figure 6: Heatmaps of community structures on overlapping node scenario with Gradient 33.93 51.09 5277 58.14
Label 65.97 7431 76.50 76.82

Cora (20 clients). Darker color indicates many missing edges between subgraphs (a)
or high similarities in labels (b). (¢) and (d) are functional similarities by FED-PUB.

Function (FED-PUB) 67.82 7351 74.66 75.90




Subgraph Federated Learning

> References

O In this tutorial
« Zhang, Ke, et al. "Subgraph federated learning with missing neighbor generation.“ NeurIPS 2021.

* Baek, Jinheon, et al. "Personalized subgraph federated learning.“ ICML 2023.

O Related references
 Huang, Wenke, et al. "Federated graph semantic and structural learning." IJCAI 2023.

* Wan, Guancheng, et al. "Federated graph learning under domain shift with generalizable prototypes."

AAAI 2024.
* Yu, Wentao, et al. "Modeling inter-intra heterogeneity for graph federated learning." AAAI 2025.
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Federated Graph Learning with Non-IID Graphs

» Background
O Graph-level tasks in FGL

« Each client has multiple graphs (e.g. molecules, proteins,

» The clients are interested in graph-level tasks (e.g., graph classification/regression)

q Graph convolution: Graph readout:
encoding local graph extracting graph Soft classification
EHII and update node features representations
client S G =1{G1,G,,...}
EE [Aae H
HEE £\ = = 0.1
» @‘ \__/_/"
ol Gs = {G1,Ca,...) — E
2 9
: > —
Server
i !
7] . 2 = | = 095
By WV -
client S,, g:—i {G:,Cy,-..)

Each client has multiple graph Graph Classification Process




Federated Graph Learning with Non-IID Graphs

MUTAG (CHEM)

» Challenges in FGL with Non-IID Graphs s2n e +

ENZYMES (BIO)

b lf I
22 |-

-1.0

[ Cross-dataset structural knowledge sharing 08

PROTEINS (BIO)

-0.6
Letter-low (CV)

» Graph data from different datasets/domains may share

Letter-med (CV)

-0.4
common structural properties random [ S

[0.2
M B E P LI Lm R 0.0

The JS divergence of degree distributions
among six graph datasets and random graphs

« Sharing structural knowledge can enhance joint training

[ Distribution Shifts

Environment: Scaffold Environment: Size
Scaffold 1 Scaffold 2

« Graphs may be collected from different environments smaler s s
. » /\
« Toy example: graphs consisting of environment-invariant _ §
o Y - e & I -,
motifs and environment-varying bases = :
Cyclopropanol 1,4-Cyclohexanediol Formic Acid Citric Acid
«  Client-invariant causal subgraphs & client-varying non-  Molecular representation learning: graphs

from environments by scaffold/size
causal subgraphs



Federated Graph Learning with Non-IID Graphs

» Cross-Dataset Structural Knowledge Sharing
O FedStar

» Share structure of graph data across homogeneous clients

Server W, Pl d
Wh eature encoder
\ ) .
_—— 1 e Personalized model
Wga Wg,2 Wo.3  Trained locally
Wh1 Wg1 Wh2 Wg2 Wh3 Wg 3
wgi Structure encoder
0 0 / o J « Global model
NN \NJI \NJI « Aggregated in the server
Client 1 Client 2 Client 3



Federated Graph Learning with Non-IID Graphs

» Cross-Dataset Structural Knowledge Sharing
O FedStar: Structure Encoding

« Intuition: incorporates both local and global structural information G 5 (Vg )
s, = concat|sD5E; sEWSE] mit. | ©—©
PO
s, @) -=-»

 sDSE: degree-based structure embedding (DSE)
sDSE = [1(d,, = 1),1(d,, = 2),--,1(d, = k)] € R*1

« sEWSE: random walk-based structure embedding (RWSE)
SRWSE = [Ty, TZ, -+, Ty;2] € RF2

T = AD 1 is a random walk transition matrix



Federated Graph Learning with Non-IID Graphs

» Cross-Dataset Structural Knowledge Sharing
O FedStar: Feature-Structure Decoupled GNN

¢=(WE) " Aggregated Personalized
O—0 \ at the server model '
Irll t O O Iy _
£© gg 1ho Oﬂ Jic gg) DO OD Local loss £
SvE _9_, i Jg i %

Structure DO Oﬂ DO Oﬂ |
embedding i ,

= h; doy Ya
Node . poO-Op OO | Readout
feature NS The l-thlayer

Feature-Structure Decoupled GNN in FedStar




Federated Graph Learning with Non-IID Graphs

» Cross-Dataset Structural Knowledge Sharing
O FedStar: Structural Knowledge Sharing

e Intuition: share the learned structure encoders across clients

 Share w, ,,, with the FL framework while keeping w, ,,, being trained locally

 Aglobal structure encoder w, and personalized feature encoders wy, ,,,

M
Dyl
W= ), Yo

m=1




Federated Graph Learning with Non-IID Graphs

» Cross-Dataset Structural Knowledge Sharing

O Experiments

« Datasets

Molecules (CHEM) Bioinformatics (BIO) | Social Networks (SN) Computer Vision
MUTAG, PTC MR, ENZYMES, COLLAB, Letter-low,
COX2, DHFR, DD, IMDB-BINARY, Letter-high,
AIDS, NCI1, BZR PROTEINS IMDB-MULTI Letter-med

« Backbone models: a three-layer GIN as the feature encoder, a three-layer GCN as the structure

encoder

» Baselines: Local, FedAvg, FedProx, FedPer, FedSage, GCFL



Federated Graph Learning with Non-IID Graphs

» Cross-Dataset Structural Knowledge Sharing

O Experiments

e« Main results

Setting (# domains) CHEM(1) BIO-CHEM(2) BIO-CHEM-SN(3) BIO-SN-CV(3)
# datasets 7 10 13 9
Accuracy avg. avg. gain avg. avg. gain avg. avg. gain avg. avg. gain
Local 75.38+2.26 - 71.0941.21 - 69.37+43.05 - 66.911+2.84 -
FedAvg 75.26+2.00 -0.13 70.6542.73 -0.44 68.9242.12 -0.45 64.861+2.73 -2.05
FedProx 75.30+£2.00 -0.08 70.75+2.26 -0.34 69.21+2.63 -0.16 65.18+£2.01 -1.72
FedPer 77.09+3.36 1.70 71.97+1.97 0.88 69.3742.92 -0.01 62.231+3.76 -4.67
FedSage 75.90£1.85 0.51 70.3441.87 -0.74 69.55+2.15 0.18 67.95+1.87 1.04
GCFL 76.49+1.23 1.11 71.6042.20 0.51 70.65+1.84 1.28 66.314+2.36 -0.60
FedStar (Ours) 79.79+2.44 4.41 74.54+-2.50 3.46 72.16+2.43 2.78 69.49+1.81 2.58




Federated Graph Learning with Non-IID Graphs

» Cross-Dataset Structural Knowledge Sharing

O Experiments

« Analysis of decoupling and sharing mechanisms

Sharing DC Setting (# domains)
BIO-CHEM(2) BIO-CHEM-SN(@3) BIO-SN-CV(3)

All - 70.8642.25 69.32+2.42 65.23+2.52
None - 71.59+£1.93 69.42+3.06 68.17+3.04
All v 71.97+2.14 69.854+2.43 65.78+4.25
None v 74.084+2.45 71.304+1.89 68.761+2.24
FE v 71.00+3.51 68.53+2.74 64.14+2.73
SE(Ours) Vv 74.54+2.50 72.15+2.43 69.49+1.81




Federated Graph Learning with Non-IID Graphs

» Cross-Dataset Structural Knowledge Sharing

O Experiments

» Analysis of varying structure embeddings

DSE RWSE Setting (# domains)
BIO-CHEM(2) BIO-CHEM-SN(3) BIO-SN-CV(3)
- - 69.514+2.25 69.644-1.92 66.05+2.92
v - 74.42+3.15 72.05+2.82 69.25+2.41
- v 72.74+3.44 70.484+3.37 67.234+2.74

v v 74.541+2.50 72.15+2.43 69.49+1.81




Federated Graph Learning with Non-IID Graphs

> Distribution Shifts

O Can We Train GNN Models over Identical Graphs?
» Original graphs — desired graphs

Client 1 Client 2 Client 3

House (ﬁ) . Causal subgraph
% O O < : Non-causal nodes

O O < : Virtual nodes

Original
graphs

’—Q\\ RS |
Desired ‘b_ \ SN ——— : Original edges
graphs --- --20
S [ OTTY | - : Added edges




Federated Graph Learning with Non-IID Graphs

> Distribution Shifts

O Train GNN models over augmented graphs with virtual nodes

U = Ny 50, () Client k
£ = w2t (7 (6:0). %) — LT
generator | ——» (0 0 1 0) \ 4

)

AC yi
[ Personalized graph augmentation i Q® T
« Added virtual node features: Q¥) € RM*dx

0
(k) | | SN
* How they connect original graphs: Sgk) € IR{|Vi e % @M "o
R

Input graph G* Augmented graph §i¥
L 13

w® 0100
s

O Message passing
« Graph nodes: h(l) = COMB(D (h(l 2 AGG(D ({hg_l): UeEN (v)})) + Y i Som h,(,,ll_l)

 Virtual nodes: h,S? = COMB‘(,Q (h%_l),AGG‘(,Q ({Sv'm : h,(,l_l): v E Vi(k)}))




Federated Graph Learning with Non-IID Graphs

> Distribution Shifts

O Virtual node may collapse to fewer virtual nodes
* Decoupling loss

1
k
£y = Izl

« X: the correlation matrix of Q

O Similar intra-client edge patterns & dissimilar inter-client edge patterns .o _

i = Sv
« Score-contrastive loss —C
(k) (o) () ‘

(k) N Slm( i Slocal)/T N (&)

L z log 1) 1 <)
E .~ —
(k) 51m fk) Sgcl)czal)/r + eSIm(SEk);Sglobal)/T Siocal = (k) Z S

i=1

O Final objective function Sglobal = Z Slooal

mln L(k) + Alﬁ(k) + AZL(k)
0,Q,wk



Federated Graph Learning with Non-IID Graphs

> Distribution Shifts

O Local training
« Step 1: fix 8 and Q, update w® by
w® « @ —pn v, (Lgk) + /1213,(5’())
«  Step 2: fix w®), update 6% and Q) by
0% « ) — v, L)
QY Q" ~nq¥q (£ + 2,.°)

O Global update




Federated Graph Learning with Non-IID Graphs

> Distribution Shifts

O Experiments

» Datasets: four datasets under five settings adapted from GOOD?

Motif CMNIST ZINC SST2

Dataset

Basis Size Color Scaffold Length
Data type Synthetic Synthetic Molecule Sentence
#(Clients) 5 5 5 10 7
#(Graphs)/client 1,000 1,000 1,000 1,000 1,000
Task Classification Classification Regression Classification
Metric Accuracy Accuracy MAE Accuracy

* GNN backbones: A three-layer GIN as the encoder and a two-layer MLP as the prediction head
» Baselines: Self-training, FedAvg, FedProx, FedBN, Ditto, FedRep, FedALA, GCFL+, FedStar
» Hyperparameters: GNN hidden size=100

[1] Gui, Shurui, et al. "Good: A graph out-of-distribution benchmark." NeurIPS 2022.



Federated Graph Learning with Non-IID Graphs

> Distribution Shifts

O Performance comparison

Dataset Motif CMNIST ZINC SST2
Metric Accuracy T Accuracy T MAE | Accuracy 1

Partition setting Basis Size Color Scaffold Length
Self-training 67.12+0.89 47.604+2.32 39.384+0.90 0.5442+0.0146 80.54+0.67
FedAvg 58.70+2.39 47.82+3.16 39.184+0.92 0.62354+0.0158 81.79+0.27
FedProx 57.90+1.36 47.88+4.08 39.784+0.68 0.62354+0.0165 81.744+0.33
FedBN 58.44+1.33 47.5442.66 39.261+0.76 0.51294+0.0119 81.73+0.35
Ditto 63.38+0.89 47.48+3.20 39.004+0.94 0.54714+0.0146 81.69+0.67
FedRep 59.20+2.83 45.48+0.86 36.78+0.67 0.522040.0110 74.77+2.84
FedALA 59.92+1.14 48.5243.34 39.2241.12 0.5837+0.0159 81.771+0.61
GCFL+ 57.36+2.00 49.34+2.70 38.82+1.11 0.62244-0.0147 81.39+0.45
FedStar 63.62+4.85 45.68+2.11 28.10+1.17 0.5963+0.0163 58.57+1.25
FedVN (Ours) 75.72+1.85 50.41+1.17 43.67+1.25 0.4947+0.0174 83.13+0.79




Federated Graph Learning with Non-IID Graphs

> Distribution Shifts

O Influence of VN numbers

(=)
o

#(VN)=1 #(VN)=20
#(VN)=5 #(VN)=50
55 - #(VN)=10 #(VN)=100
o
gso | | |
) ‘ | ‘
9
<45 I |
i |
40 - l

Motif/Size CMNIST/CoIor

Performance of FedVN with different numbers of VNs



Federated Graph Learning with Non-IID Graphs

> Distribution Shifts

O Visualization of distribution shifts in FedAvg and FedVN

Cross-client cosine similarities of graph embeddings in each client on Motif/Basis

10.05 0.02 0.03 0.04 0.01

{0.02 0.41 0.05 0.13 0.20
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Client
(a) Class 0 with FedAvg
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(e) Class 1 with FedVN
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Federated Graph Learning with Non-IID Graphs

> References
O In this tutorial

« Tan, Yue, et al. "Federated learning on non-iid graphs via structural knowledge sharing." AAAI 2023.
« Fu, Xingbo, et al. "Virtual nodes can help: tackling distribution shifts in federated graph learning."
AAAI 2025.

O Related references
» Tan, Zihan, et al. "FedSSP: federated graph learning with spectral knowledge and personalized

preference." NeurIPS 2024.

* Wan, Guancheng, et al. "Federated graph learning under domain shift with generalizable prototypes."

AAAI 2024.
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Privacy-Preserving Federated Graph Learning

» Background

O Private information in graph data
» Local information: graph structure and node features contain sensitive information

e Cross-client interactions

[ = . \ [ = . \
& Client1 & Client 2 o
[ Name: an
= OO & s e ﬂ
_D_( / Address: £ @ BANK D \\
e $ S EaT—0 N\
Transaction time: P9 - £ & N4 & \\
Bank account: ‘___1.' _____ 4 & ¥ s
Platform account: ;/ \—/ o '\ ~~~~ . /,,1'—" C@\\\
User habits: P \ & e/ a v,
ﬂ Local training ﬂ 4 & 5 Fg ——\—\/’ﬂg/\ @ &2 i
’,' % \\s 'I 7 2 \\‘ @ \% \\
eSS i e T [ \ é |
i &4 H NG ee— &
~. M SNG 22 A
Aggregation . B e a” " " ganks 11
Central Server s T —




Privacy-Preserving Federated Graph Learning

» Challenges in Privacy-Preserving FGL

O Entity-level privacy protection (leakage from model updates)
« Entity feature inference
« Entity membership inference
O Structure-level privacy protection (leakage from graph structures)

* Cross-client neighbor leakage

* Boundary nodes leakage
Central Server

/V\Entity privacy leakage
L) L

E Client1 € Client2

- L O—2

o |

® _— | Structure [ ]
a

privacy

leakage




Privacy-Preserving Federated Graph Learning

» Entity-Level Privacy Protection

O Hide local private information
« Differential privacy (DP) / Local differential privacy (LDP)

« Entity anonymization

r& user m @Cﬁj-“:ﬁ“m t_T___t tion |
O Application
 Recommendation systems c. Y
« Solution: FeSoG 8 (fﬂ

Do
iy
R __

| Model |  Cliemt3 |

(a) Centralized Learning (b) Federated Learning




Privacy-Preserving Federated Graph Learning

> FeSoG

O Federated Social recommendation with Graph neural network
* Social recommendation: Given user set U, item set T, rating matrix R, and social connection matrix
S, complete the ratings of users to items.
Definition 1 (Client). A client c is defined as a local device storing the rating data and the social

data|Each client ¢, is associated with a user n] whose rating data and social data are R,. and S,.,
respectively.

Definition 2 (Server). A server is defined as a central device managing the coordination of mul-
tiple clients in training a model. It does not exchange raw data from clients but only requests
necessary messages for updating the model.

Definition 4 (Problem Definition). Given the local graphs {G, |;:J:1 }, can we collaboratively train
a model to predict the attribute value for an unobserved edges (u,,t") without access to the raw
data of any local graphs?



Privacy-Preserving Federated Graph Learning

> FeSoG

O User and item embeddings

€y, pload |4
e

<

equest f'ﬁ,

[ Suippaquy ]

BN
-~
-1

» Held by the central server e

T T
sorpalt
Cpey

(b) Local Graph Neural Network

« Updated by aggregating the gradients from clients (a) Attention Weights

0 Local GNN
 Relational GAT

Neighbor aggr: Relational aggr:
User-user Onp = LeakYReLU (aT [wleu" ”Wleup]) s p I exp (CT [hm”v ])
(n) _ (n) _ _ u u
User-tem o, = LeakyReLU (b7 [Waeu, [Waes, ) M gy = g s Y e e o Y| Py e
exp(onp) exp (<7 [h"Ivi])
= = - I t = 3
%np SOftmaXP(OHP) Z}P:] exp (0ni) ’ tem v exp (cT [h;")llvu]) +exp (cT [h(t")llvt]) +exp (CT [hi"’llvs])
exp (Un;) (n)
Pnic = softmaxy (Vi) = X exp (o0 - exp (c” [h"lIvs])
t=1 E%P Wnt Self " cxp (7 [0 Iva]) + exp (e7 [ v ]) + exp (& [0 1va])’



Privacy-Preserving Federated Graph Learning

> FeSoG

Q Privacy protection ———
i 9
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c ‘.. a
. . ;*A’ % : R 'é E
« Pseudo-item sampling @ : = [ I
Client 1 :
« Sample g non-neighbor items as pseudo items I
erver ]
« Compute ratings using the local GNN : ael ) |
| =t
« Use rounded ratings as the labels for pseudo " g ;
. R ¢ |
1tems @& Heos EYER—E 090 O F T
P 5 (O A woion
Client 2 g Bg? E;:?’r"o‘:l’]‘é" l
‘_. pseudo-ilemé
B Rotmrat At




> FeSoG

O Experimental results

Privacy-Preserving Federated Graph Learning

* FeSoG outperforms the SOTA federated recommender systems

* GNN-based models outperform MF-based models

» Federated learning impairs the performance compared with centralized learning

Table 4. Experiment Results Compared with Baseline Methods

— SoRec [32]: Tt co-factorizes user-item rating matrix and user-user social matrix.

— SoReg [33]: It develops a social regularization with social links to regularize on MF.

— SocialMF [18]: Compared with SoReg, social MF also considers social trust propagation.

— CUNE [64]: Collaborative user network embedding assumes users hold implicit social links
from each other, and it tries to extract semantic and reliable social information by graph
embedding method.

— GCMC+SN [2]: GCMC is a GNN-based method. User nodes are initialized as vectors learned
by node2vec [12] from the social graph to obtain social information. The dense representa-
tion learned upon the social graph can include more information than the random initialized
feature.

— GraphRec [9]: Graph recommendation uses GNN to learn user embedding and item embed-
ding from their neighbors and uses several fully connected layers as the rating predictor.

— ConsisRec [61]: It is the state-of-the-art (SotA) method in social recommendation. Consis-
Rec modifies GNN to mitigate the inconsistency problems in social recommendation.

Method Ciao Epinions Filmtrust
RMSE MAE RMSE MAE RMSE MAE
SoRec 1.2024 08693 13389 1.0618 1.8094 1.4529
SoReg 1.0066 0.7595 1.0751 0.8309 1.7950 1.4413
SocialMF 1.0013 0.7535 1.0706 0.8264 1.8077 1.4557
GCMC+SN 1.0301 0.7970 1.1070 0.8480 1.8025 1.4325
GraphRec 1.0040 0.7591 1.0799 0.8219 1.6775 1.3194
CUNE 1.0002 0.7591 1.0681 0.8284 1.7675 1.4178
ConsisRec 09722 0.7394 1.0495 0.8046 1.7148 1.3093
FedMF 24216  2.0792 2.0685 1.5254 2795  2.1713
FedGNN 2.02 1.58 1.8346  1.4238 2.13 1.65
FeSoG 1.9136 1.4937 1.7969 1.3847 2.0942 1.5855
Improvement | 5.26%  5.46%  2.05% 2.74%  1.68% 3.9%

The best federated learning results are in bold, and the best results for non-federated
learning methods are underlined. Improvement indicates the percent that FeSoG
improves against the second-best federated learning result.

— FedMF [4]: It separates the MF computation to different users and uses an encryption method
to avoid information leakage.

— FedGNN [53]: Federated GNN is the SotA federated recommendation method. It adopts local
differential privacy methods to protect user’s interaction with items.

Matrix
Factorization

Graph Neural
Network

Federated
Learning



Privacy-Preserving Federated Graph Learning

> FeSoG

O Experimental results
* FeSoG outperforms the SOTA federated recommender systems
« If increasing # pseudo items, the error value increases for both methods

« Ifincreasing # pseudo items, the extra computational cost increases linearly
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Fig. 6. RMSE performance with respect to different pseudo item numbers on three datasets. Fig. 7. MAE performance with respect to different pseudo item numbers on three datasets.




Privacy-Preserving Federated Graph Learning

> FeSoG

O Experimental results
« With a fixed A, FeSoG performs better when increasing 6 (reducing gradient clipping)
« With fixed 6, FeSoG performs worse when increasing A (increasing noise)

« There is a tradeoff in selecting optimal values of A and 6

1.64
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1.40 =0
2.125{ - - 1.621 ...
= w 1.65 w w
£ 2.100 g g <1.60
1.60 1.38
2.075 1.58
2.050 1.5 156"
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2 A
(b) Epinions (c) Filmtrust (a) Ciao (b) Epinions (c) Filmtrust
Fig. 11. RMSE performance with respect to different § and A on three datasets. Fig. 12. MAE performance with respect to different § and A on three datasets.
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Privacy-Preserving Federated Graph Learning

» Structure-Level Privacy Protection

Distribute

O Hide cross-client interaction

» Privacy-preserving local neighbor expansion

* Local neighbor generation

* Local information mixup

Distribute

O Solutions
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Privacy-Preserving Federated Graph Learning

» FedGNN

O Privacy protection HH
. . . o = I:E Anonymous Neighbor _
e LDP with uniform Gaussian Expand * I_ UserEmbecaing L, Distribute
. . . . . . Y [tem D
« Pseudo item sampling with Gaussian-noise gradient vser "“’”‘E“bﬁ“““ .
Ly tixw |, -
« Sample q non-neighbor items as pseudo items Ifiﬁl..*-.. . tix @ Thisrd_pam,
— 2l erver
» Generate gradients of pseudo items using Gaussian | SHEE
User Embedding

noise with the same mean and covariance as real items

5 Server

User Embedding

« Privacy-preserving user-item graph expansion | e
User-llemuSub-graph e

Algorithm 2 privacy-preserving user-item graph expansion é e |E §
& P gl @
1: PrivacyPreservingGraphExpansion(): ;3?1 A r;ia' fox % g
i 1 I 3 Elr
2. Server sends a public key p to user clients J = it iDe &
3. User clients encrypt item IDs with p
. . . l T Public Key
4. User clients upload the user embedding and encrypted item T 7 (@ Anonymous Neighbor Distribute
IDs to a third-party server ’ a T Ueer Frhedding
5. Third-party server distributes neighboring user embeddings to e )

user clients
6: User clients extend local graphs




Privacy-Preserving Federated Graph Learning

» FedGNN

O Experimental results
» The performance of FedGNN is satisfactory on different GNN backbones
« Variants utilizing the high-order information by local neighbor expansion perform better
than those without high-order information
» Using fixed neighbor user embeddings (trained in certain iterations) is better than using fully

trainable ones (updated in each iteration)

Wio Neighbor User Embedding W/ Trainable Neighbor User Embedding W/ Fixed Neighbor User Embedding
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Figure 4: Influence of second-order information and different GNN architectures.
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» FedEgo

_ I (]
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* Global stage:

« Train personalized layers on local mashed ego graphs

* Global parameter aggregation




Privacy-Preserving Federated Graph Learning

» FedEgo

O Local ego graph mixup
« Mixing up node embeddings and labels in the ego graphs in each batch

« Ego graphs are adopted as they are easily aligned for mixup (hiding private information while sharing)

1st Ego-graph Kth Ego—-graph

] o= EIK:J.T{ o Eii(:ly}
, =

Mashed Ego-graph

| "”“”‘gﬂ.;:’“
H

T3, Y3

(a) (b)

Fig. 2. (a) lllustration of 1 hop ego-graph. (b) lllustration of the alignment and Mixup among a batch of ego-
graphs. The center nodes are aligned together and their neighbors are extended recursively. The reduction
embedding r and one-hot label y are averaged according to the alignment.




Privacy-Preserving Federated Graph Learning

» FedEgo

O Experimental results
* Fed methods benefit from the collaboration on all datasets and enhance the personalization ability

of local models

« FedEgo consistently outperforms other methods and improves the generalization ability of local
models
« The improvement indicates that FedEgo can facilitate client collaboration and generalize across

non-IID local graph data

Table 2. F1 Score for Node Classification in the Local Test under Label-skew Scenarios Table 3. F1 Score for Node Classification in the Global Test under Label-skew Scenarios
Dataset |Local Only | FedAvg | FedProx | GraphFL |D-FedGNN | FedGCN | FedSage | FedSage+ | FedEgo Dataset |Local Only | FedAvg | FedProx | GraphFL |D-FedGNN | FedGCN | FedSage | FedSage+ | FedEgo
Cora 0.8437 0.9473 0.9483 0.867 0.9503 0.8784 0.9507 0.952 0.9577 Cora 0.6985 0.7706 0.7697 0.7346 0.7865 0.6933 0.7926 0.7848 0.8016
(+£0.0039) | (+£0.0012) | (£0.0019) | (+0.0029) | (+£0.0017) | (+0.0006) | (+0.0009) | (£0.0008) | (+0.0012) (+£0.0014) | (+0.0033) | (+0.0037) | (£0.0027) | (+0.0022) | (+0.0007) | (+0.0018) | (+0.0026) | (+0.0019)
Citeseer 0.7617 0.918 0.918 0.755 0.9193 0.8967 0.913 0.9137 0.9210 Citeseer 0.6125 0.6941 0.6924 0.6327 0.7049 0.6614 0.7055 0.7071 0.7200
(+£0.0005) | (+£0.0029) | (£0.0014) | (+0.0014) | (+£0.0005) | (+0.0008) | (+0.0008) | (£0.0005) | (+0.0024) (+£0.0003) | (+0.0058) | (+0.0038) | (+0.0070) | (+0.0055) |(+0.0009) | (+0.0011) | (+0.0012) | (+0.0015)
Wiki 0.8728 0.9258 0.9232 0.8088 0.92 0.817 0.9223 0.9246 0.9191 Wiki 0.696 0.7856 0.7851 0.7112 0.7960 0.4428 0.7839 0.7849 0.8126
(+£0.0141) | (£0.0101) | (£0.0096) | (+0.0069) | (+£0.0097) | (+0.0040) | (+0.0083) | (£0.0075) | (+0.0077) (+£0.0113) | (£0.0020) | (+0.0034) | (+0.0061) | (+0.0014) |(+0.0310) | (+0.0006) | (+0.0001) | (+0.0100)
CoraFull 0.6402 0.874 0.873 0.477 0.8837 0.8466 0.881 Out Of 0.8972 CoraFull 0.4905 0.5351 0.5336 0.3328 0.5615 0.4777 0.599 Out Of 0.6221
(£0.0002) | (+0.0010) | (£0.0009) | (+0.0017) | (£0.0003) | (£0.0025) | (+0.0003) | Memory | (+0.0008) (£0.0006) | (+0.0045) | (£0.0050) | (£0.0032) | (£0.0011) |(+0.0005) | (+0.0006) | Memory | (+0.0006)
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> References
O In this tutorial

» Liu, Zhiweli, et al. "Federated social recommendation with graph neural network." ACM TIST 2022.
* Wu, Chuhan, et al. "Fedgnn: Federated graph neural network for privacy-preserving
recommendation." FL-ICML’21.

« Zhang, Taolin, et al. "FedEgo: privacy-preserving personalized federated graph learning with ego-

graphs." ACM TKDD 2023.
O Related references
* Yan, Bo, et al. "Federated heterogeneous graph neural network for privacy-preserving
recommendation." WWW 2024.

« Tian, Changxin, et al. "Privacy-preserving cross-domain recommendation with federated graph

learning." ACM TOIS 2024.
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Summary and Future Directions

» Summary
O FGL jointly trains graph learning models over distributed graph data

« Transmit model parameters while keeping graph data locally

O Key research topics in FGL

Research Topics Challenges Techniques Representative Works

Missing cross-client links Missing neighbor generator FedSage+

Subgraph Federated , . ,
Functional similarity matching +

Learnin ‘ ‘ _
2 oIy e ety personalized parameter masking oL
, Cross-dataset structural :
FGL V\élth 1;110n—IID knowledge sharing Structure knowledge sharing FedStar
rapis Distribution shifts Virtual node optimization FedVN
Privacy-Preserving Entity-level privacy protection (Local) differential privacy FedSoG
FGL Structure-level privacy protection Local information mixup FedGNN, FedEgo




Summary and Future Directions

» Future Directions Client1 |[ Client2
2|8 e
Q FGL on text-attributed graphs (TAGs) B-B =8
/ \ 4 N =
» Enhance modeling TAGs via LLMs

O FGL with graph foundation models (GFMs)

» Cross-dataset/domain graph data

Wil

» Personalized adaptation

O Backdoor attack & defense in FGL 822 i, Wit |

f N
\
casce L5 Vo, M () TV, M Liso?]?
wee = 32 |9 q 3 M3l [}
s — " E, b

' ~ 1 Ly ¢, + Ben rgy
H | » ! fl log exp(f(x)[y]) ¢ by |
1 5 | & =5 "%‘ /() ::> A Malicious Meta Energy |
LEPIEPIErP S| (D Energycalculation, 1% pull I
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» Topology knowledge injection

Injecting Energy Distribution

s O \
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Thanks for listening!

Presenters: Xingbo Fu, Zihan Chen, Binchi Zhang, Jundong Li

University of Virginia

SDM 2025 Tutorial
May 2025
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